心路历程
预计得分:$30 + 0 + 0 = 30$
实际得分:$0+0+0= 0$
T1算概率的时候没模爆long long了。。。
A
我敢打赌这不是noip难度。。。
考虑算一个位置的概率,若想要$k$步把它干掉,那么与他距离为$1$到$k - 1$的点都必须阻塞
且距离为$k$的点至少有一个没被阻塞
概率的处理可以用前缀和优化。
这样看似是$O(n^3 logn)$,但是却不能通过,考虑在前缀和处理的时候有很多没用的状态(超出边界)
加一些剪枝即可
#include#define max(a, b) (a < b ? b : a)#define LL long longusing namespace std;const int MAXN = 201, mod = 1e9 + 7, INF = 1e9 + 10;inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f;}int N, M, a[MAXN][MAXN], g[MAXN][MAXN][MAXN], vis[MAXN][MAXN];LL fastpow(LL a, LL p) { LL base = 1; while(p) { if(p & 1) base = 1ll * base * a % mod; a = 1ll * a * a % mod; p >>= 1; } return base;}LL inv(LL a) { return fastpow(a, mod - 2);}int mul(int a, int b) { if(1ll * a * b > mod) return 1ll * a * b % mod; else return a * b;}void Pre() { //cout << a[1][1] << endl; for(int i = 1; i <= N; i++) for(int j = 1; j <= M; j++) g[0][i][j] = a[i][j] % mod; for(int k = 1; k <= max(N, M); k++) for(int i = 1; i <= N; i++) for(int j = 1; j <= M; j++) { if((i - k < 0) || (j - k < 0) || (i + k > N + 1) || (j + k > M + 1)) {vis[i][j] = 1; continue;} if(vis[i][j]) continue; g[k][i][j] = mul(g[k - 1][i - 1][j], g[k - 1][i + 1][j]); if(k > 2) g[k][i][j] = mul(g[k][i][j], inv(g[k - 2][i][j])); if(k >= 2) g[k][i][j] = mul(mul(g[k][i][j], inv(a[i][j + k - 2])), inv(a[i][j - k + 2])); g[k][i][j] = mul(mul(g[k][i][j], a[i][j + k]), a[i][j - k]); }}LL calc(int x, int y) { LL ans = 0, s = a[x][y]; for(int i = 1; i <= max(N, M); i++) { if((x - i < 0) || (y - i < 0) || (x + i > N + 1) || (y + i > M + 1)) break; int now = g[i][x][y]; ans = (ans + mul(mul(i, (1 - now + mod)), s)) % mod; s = mul(s, now); } return ans;}int main() {// freopen("a.in", "r", stdin); N = read(); M = read(); for(LL i = 1; i <= N; i++) { for(LL j = 1; j <= M; j++) { LL x = read(), y = read(); a[i][j] = mul(x, inv(y)); } } Pre(); for(LL i = 1; i <= N; i++, puts("")) for(LL j = 1; j <= M; j++) printf("%lld ", calc(i, j) % mod); return 0;}
B
考场上根本就没时间做。。
题目给出的模型太难处理了,考虑转化成一个较为普通的模型
遇到这种每个点有两个状态的题不难想到拆点,分别表示赢 / 输
当$a$赢了$b$,就从$a$赢向$b$输连边。
这样会得到一个新的无环图,可以证明,两个图中的环是等价的。
直接暴力找最小环即可,时间复杂度:$O(n^2 T)$
#includeusing namespace std;const int MAXN = 10005, BIT = 13;int N, M, dep[MAXN], fa[MAXN][21], MC, U, V;vector v[MAXN];int LCA(int x, int y) { if(dep[x] < dep[y]) swap(x, y); for(int i = BIT; i >= 0; i--) if(dep[fa[x][i]] >= dep[y]) x = fa[x][i]; if(x == y) return x; for(int i = BIT; i >= 0; i--) if(fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i]; return fa[x][0];}void bfs(int x) { queue q; q.push(x); dep[x] = 1; fa[x][0] = 0; while(!q.empty()) { int p = q.front(); q.pop(); for(int i = 0, to; i < v[p].size(); i++) { if(!dep[to = v[p][i]]) { fa[to][0] = p; dep[to] = dep[p] + 1; for(int j = 1; j <= BIT; j++) fa[to][j] = fa[fa[to][j - 1]][j - 1]; q.push(to); } else if(to != fa[p][0]) { int lca = LCA(p, to), dis = dep[p] + dep[to] - 2 * dep[lca] + 1; if(dis < MC) MC = dis, U = p, V = to; } } }}int main() { int meiyong; scanf("%d", &meiyong); while(scanf("%d", &N) && N) { //tag scanf("%d", &M); MC = MAXN; for(int i = 1; i <= 2 * N; i++) v[i].clear(); memset(dep, 0, sizeof(dep)); memset(fa, 0, sizeof(fa)); for(int i = 1; i <= M; i++) { int x, y; scanf("%d %d", &x, &y); v[x].push_back(y + N); v[y + N].push_back(x); } for(int i = 1; i <= 2 * N; i++) if(!dep[i]) bfs(i); if(MC == MAXN) {puts("-1");continue;} int lca = LCA(U, V); vector ans; ans.clear(); printf("%d\n", MC); while(U != lca) printf("%d ", (U - 1) % N + 1), U = fa[U][0]; printf("%d", (lca - 1) % N + 1); while(V != lca) ans.push_back((V - 1) % N + 1), V = fa[V][0]; for(int i = ans.size() - 1; i >= 0; i--) printf(" %d", ans[i]); puts(""); } return 0;}/**/
C
$k=2$的时候是
$k \not = 2$的时候是神仙结论
考虑$k \not = 2$怎么做。
结论:
若$l = n$时先手必输,那么我们找到一个$m = \frac{n}{k} >= n$,且最小的$m$,当$l = n+m$先手也一定必输
证明:
我们把多着的$m$个单独考虑,若$n < l < n+m$时,先手拿走多余的$m$个,后手必败。
但当$l = n +m$时,先手不能拿走$m$个,因为此时后手可以一步拿走剩余的。
不断往下推就行了
#include#define LL long long using namespace std;const int MAXN = 1e7 + 10;int T, k, top;LL l, sta[MAXN];int main() { cin >> T; while(T--) { cin >> k >> l; LL now = 1; sta[top = 1] = 1; while(now < l) { int nxt = lower_bound(sta + 1, sta + top + 1, (now % k == 0) ? now / k : (now / k + 1)) - sta; sta[++top] = (now = (now + sta[nxt])); } puts(now == l ? "DOG" : "GOD"); } return 0;}/*12 21*/